International Journal for Asian Contemporary Research, 1(4): 156-161

Research Article

Estimation of the Phosphorus Sorption and Saturation in the Eastern Surma-Kusiyara Floodplain and Gopalganj-Khulna Bill Soil of Bangladesh

Md. Belal Hossain,
Md. Belal Hossain,

Soil Science Division, Bangladesh Institute of Nuclear Agriculture, Mymenshing, Bangladesh

Rakhi Rani Sarker
Rakhi Rani Sarker

Soil Science Division, Bangladesh Institute of Nuclear Agriculture, Mymenshing, Bangladesh

and Majharul Islam*
Majharul Islam*

*Soil Science Division, Bangladesh Institute of Nuclear Agriculture, Mymenshing, Bangladesh. Email: [email protected]


Received: 06 October || 2021; Accepted: 03 Nobember, 2021 || Published: 05 Nobember, 2021

 

A b s t r a c t

Annual P application rates should be in equilibrium with the rate of P sorption by soil to ensure enough P in the soil for optimal crop production. So, an experiment was carried out to determine and compare the effect of solution P concentrations on P sorption/desorption in the soils of Eastern Surma-Kusiyara Floodplain and Gopalganj-Khulna Bill. Five samples were collected from cultivated rice fields at 0-15 cm soil depth in each site and analyzed. Phosphorus adsorption isotherms were constructed using standardized phosphorus adsorption isotherm procedure. Phosphorus in solution was analyzed spectrophotometrically using the ascorbic acid method. The sorption phosphorus amount (Psorbed) was calculated as the difference between the initial amount of P added and the amount in the equilibrium solution. Phosphorus desorption happened in 1, 2, 4 µg P ml-1 solution whereas phosphorus adsorption found in 16, 25, 50, 100 & 150 µg P ml-1 solution. The results show that increasing the concentration of solution P increased P retention onto soil significantly. Maximum phosphorus adsorption capacity (MPAC) (17.24 µg g-1) was found in agro ecological zone 14 soil in respect of adsorption energy. The P saturation of different agroecological zone 14 and agroecological zone 20 soils were 6.33 and 6.10%. The studied sample’s phosphorus saturation index demonstrated a far below threshold critical limit of 25. As a result, the application of P fertilizer or manure in our studied soils is environmentally safe.

Keywords: Phosphorus, sorption/adsorption, saturation and Agro-ecological Zones.

*Corresponding author: Soil Science Division, Bangladesh Institute of Nuclear Agriculture, Mymenshing, Bangladesh. Email: [email protected]


Copyright information: Copyright © 2021 Author(s) retain the copyright of this article. This work is licensed under a Creative Commons Attribution 4.0 International License


    To cite this article:  Hossain, M.B., Sarker, R.R., and Islam, M. (2021). Estimation of the Phosphorus Sorption and Saturation in the Eastern Surma-Kusiyara Floodplain and Gopalganj-Khulna Bill Soil of Bangladesh. International Journal for Asian Contemporary Research, 1 (4): 156-161.  

Reference

  1. Abedin, M. J., & Saleque, M. A. (1998). Effects of phosphorus fertilizer management on phosphorus sorption characteristics of lowland rice soil. Thai Journal of Agricultural Science (Thailand), 31, 122-129.
  2. Adeniyi, A. A., Yusuf, K. A., & Okedeyi, O. O. (2008). Assessment of the exposure of two fish species to metals pollution in the Ogun river catchments, Ketu, Lagos, Nigeria. Environmental Monitoring and Assessment, 137(1), 451-458.
  3. Jobe, B. O., Tsai, S. L., & Hseu, Z. Y. (2007). Relationship between compost pH buffer capacity and P content on P availability in a virgin Ultisol. Soil science, 172(1), 68-85.
  4. Bartolome, V. I., Carrasco, M. C. C., Quintana, L. C., Ferino, M. I. B., Mojica, J. Z., Olea, A. B., Paunnlagui, L. C., Ramos, C.G., Ynalvez, M. A. & Mclaren, C. G. (1998). Experimental design and data analysis for agricultural research. Vol. 1. IRRI, Manila, Philippines.
  5. Beauchemin, S. & Simadr, R. R. (1999). Soil phosphorus saturation degree: Review of some indices and their suitability for P management in Quebec, Canada. Canadian Journal of Soil Science, 79, 615-625.
  6. Davis, R. L., Zhang, H., Schroder, J. L., Wang, J. J., Payton, M. & Zazulak, A. (2005). Soil characteristics and phosphorus level effect on phosphorus loss in runoff. Journal of Environmental Quality, 34, 1640-1650.
  7. FRG. (2005). Fertilizer recommendation guide. Soils Publication No. 45. Bangladesh Agricultural Research Council, Farmgate, New Airport Road, Dhaka. p. 23.
  8. Harter, R. D. (1984). Curve-fit errors in Langmuir adsorption Maxima. Soil Science Society of America Journal, 48, 749-752.
  9. Hoque, M. F., Haque, M. A., Hossain, M. K., Haque, M. Z. & Hussain, A. S. M. I. (2011). Characterization of some coastal delta soils of Bangladesh. Journal of Bangladesh Society of Agricultural Science and Technology, 8, 77-82.
  10. Hoque, M. F., Islam, M. S., Islam, M. R., Rashid, M. H. & Saleque, M. A. (2015). Phosphorus fractionations in Ganges tidal floodplain soil of Bangladesh. Bangladesh Rice Journal, 19(2), 57-63.
  11. Huber, H., Jacobs, E. & Visser, E. J. W. (2009). Variation in flooding-induced morphological traits in natural populations of white clover (Trifolium repens) and their effects on plant performance during soil flooding. Annals of Botany, 103, 377-386.
  12. Ige, D. V., Akinremi, O. O. & Flaten, D. N. (2005). Environmental index for estimating the risk of phosphorus loss in calcareous soils of Manitoba. Journal of Environmental Quality, 34, 1944-1951.
  13. Islam, M. A., Saleque, M. A., Karim, A. J. M. S., Solaiman, A. R. M. & Masud, M. M. (2007). Characterization of acid piedmont rice soils for phosphorus sorption and phosphorus saturation. Bulletin of the Institute of Tropical Agriculture Kyushu Univ, 30, 11-27.
  14. Islam, M. A., Saleque, M. A., Islam, M. S., Karim, A. J. M. S., Solaiman, A. R. M. & Islam, A. (2010). Phosphorus fractionations in acidic piedmont rice soils. Communication Soil Science and Plant Analysis, 41, 1178-1194.
  15. Islam, M. S., Ahmed, M. K. & Al-mamun, M. H. (2015a). Metal speciation in soil and health risk due to vegetables consumption in Bangladesh. Environmental Monitoring and Assessment, 187, 288-303.
  16. Islam, M. S., Ahmed, M. K. & Al-mamun, M. H. (2015b). Distribution of trace elements in different soils and risk assessment: A case study for the urbanized area in Bangladesh. Journal of Geochemical Exploration, 158, 212-222.
  17. Islam, M. S., Ahmed, M. K., Al-mamun, M. H. & Masunaga, S. (2014). Trace metals in soil and vegetables and associated health risk assessment. Environmental Monitoring and Assessment, 186, 8727-8739.
  18. Islam, R. M. (2003). Phosphorus chemistry in wetland rice soil profile of a Vertic Haplustept. M.Sc. Thesis. Department of Soil Science. Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur (Unpublished).
  19. Kabir, M. H., Talukder, N. M., Uddin, M. J., Mahmud, H., & Biswas, B. K. (2011). Total Nutrient Uptake by Grain plus Straw and Economic of Fertilizer Use. Journal of Environmental Science and Natural Resources, 4(2), 83-87.
  20. Kamrunnahar, S Ahmad, M Iqbal, M N Islam and A Islam.2016. Effects of NPKS on yield and nutrition of BRRI dhan49. Bangladesh Rice J. 20 (2) : 39-47.
  21. Kamrunnahar, Ahmad, S., Iqbal, M., Islam, M. N., & Islam, A. (2016). Effects of NPKS on Yield and Nutrition of BRRI dhan49. Bangladesh Rice Journal, 20(2), 39-47.
  22. Kleinman, P. J. A. & Sharpley, A. N. (2002). Estimating phosphorus sorption saturation from Mehlich-3 data. Communications in Soil Science and Plant Analysis, 33, 1825-1839.
  23. Lair, G. J., Zehetner, F., Khan, Z. H. & Gerzabek, M. H. (2009). Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma, 149, 39-44.
  24. Litaor, M. I., Reichman, O., Haim, A., Auerswald, K. & Shenker, M. (2005). Sorption characteristics of phosphorus in peat soils of semiarid and altered wetland. Soil Science Society of America Journal, 69, 1658-1665.
  25. Manning, P., Putwain, P. D. & Webb, N. R. (2006). The role of soil phosphorus sorption characteristics in the functioning and stability of lowland heath ecosystems. Biogeochemistry, 81, 205-217.
  26. Mallarino, A. P. (1997). Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content. Journal of Production Agriculture, 10, 163-167.
  27. Mehadi, A. A. & Taylor, R. W. (1988). Phosphate adsorption by two highly weathered soils. Soil Science Society of America Journal, 52, 627-632.
  28. Mehlich, A. (1984). Mehlich-3 soil test extraction: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis,15, 1409-1416.
  29. Mehra, O. P. & Jackson, M. L. (1960). Iron oxide removal from soils and clays by dithionite citrate system buffered with sodium bicarbonate. Proc. 7th Nat. Conf. Clays and Clay Min. New York: Pergamon Press. pp. 317-327.
  30. Murphy, J. & Riley, J. P. (1962). A modified single solution method for determination of phosphate in natural waters. Analytica Chemica Acta, 27, 31-36.
  31. Nelson, D. W. & Sommers, L .E. (1982). Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed., edited by Page, A.L., Miller, R.H. & Keeney, D.R. Madison, Wisconsin: American Society of Agronomy, Inc. & Soil Science Society of America, Inc. pp. 539-577.
  32. Nizam, M. U., Shariful, M. & Saleque, M. A. (2008). Phosphorus sorption in clay loam soils influenced by phosphatic fertilizer. International Journal of Sustainable Agriculture, 4, 12-17.
  33. Rupa, T. R., Tomar, K. P., Srinivasa Rao, C. H. & Subba Rao, A. (2001). Kinetics of phosphate sorption-desorption as influenced by soil pH and electrolyte. Agrochimica, 45, 124-133.
  34. Saleque, M. A. & Kirk, G. J. D. (1995). Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytologist, 129, 325-336.
  35. Saleque, M. A., Naher, U. A., Pathan, A. B. M. B. U., Hossain, A. T. M. S. & Meisner, C. A. (2004). Inorganic and organic phosphorus fertilizer effects on the phosphorus fraction in wetland rice soils. Soil Science Society of America Journal, 68, 1635-1644.
  36. Saleque, M. A., Uddin, M. K., Salam, M. A., Ismail, A. M. & Haefele, S. M. (2010). Soil characteristics of saline and non-saline deltas of Bangladesh. In Tropical Deltas and Coastal Zones: Food Production, Communities and Environment at the Land and Water Interface, edited by Hoanh, C.T., Szuster, B., Kam, S., Ismail, A. & Noble, A. CAB International, Wallingford, U.K. pp. 144-153.
  37. Sharpley, A. N. (1996). Availability of residual phosphorus in manured soils. Soil Science Society of America Journal, 60, 1459-1466.
  38. Sui, Y. & Thompson, M. L. (2000). Phosphorus sorption, desorption and buffering capacity in a biosolids amended mollisol. Soil Science Society of America Journal, 64, 164-169.
  39. Wang, Y., Shen, Z., Niu, J. & Liu, R. (2008). Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment composition. Hazard Mater. 18554791 (P.S.G.E.B.D). College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310029, PR China (Unpublished).
  40. Wardle, D. A., Walker, L. R. & Bardgett, R. D. (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509-513.
  41. Zhang, H., Schroder, J. L., Furman, J. K., Basta, N. T. & Payton, M. E. (2005). Path and multiple regression analyses of phosphorus sorption capacity. Soil Science Society of America Journal 69(1), 96-106.
  42. Zhou, M. & Li, Y. (2001). Phosphorus-sorption characteristics of calcareous soils and limestone from the southern everglades and adjacent farmlands. Soil Science Society of America Journal, 65(5), 1404-1412.

  Article View: 3303 times